Stock price direction prediction by directly using prices data: an empirical study on the KOSPI and HSI
نویسنده
چکیده
The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. Many stock prediction studies focus on using macroeconomic indicators, such as CPI and GDP, to train the prediction model. However, daily data of the macroeconomic indicators are almost impossible to obtain. Thus, those methods are difficult to be employed in practice. In this paper, we propose a method that directly uses prices data to predict market index direction and stock price direction. An extensive empirical study of the proposed method is presented on the Korean Composite Stock Price Index (KOSPI) and Hang Seng Index (HSI), as well as the individual constituents included in the indices. The experimental results show notably high hit ratios in predicting the movements of the individual constituents in the KOSPI and HIS.
منابع مشابه
Market Index and Stock Price Direction Prediction using Machine Learning Techniques: An empirical study on the KOSPI and HSI
The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. In this paper, we propose an empirical study on the Korean and Hong Kong stock market with an integrated machine learning framework that employs Principal Component Analysis (PCA) and Support Vector Machine ...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملInvestigating the Effect of Oil Price Shocks on Stock and Gold Prices During Periods of Decline and Increase in Oil Prices
This paper presents a differentiated approach for assessing the effect of oil price changes on gold price and the stock index, during upward and downward movements, using the Markov Switching Bayesian VAR model to analyze data for Iran over the period 2009 to 2016. We study the non-linear relationship between the price of oil and gold and the stock market index during periods of price decrease...
متن کاملPredicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm
Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJBIDM
دوره 9 شماره
صفحات -
تاریخ انتشار 2014